Insulation - Transformer Examples of Electrical

Examples of Electrical Insulation Gas-Filled Transformer

Examples of Electrical Insulation - Cable

12/6/2014

Insulation - Transformer **Examples of Electrical**

Insulation - Gas Circuit Breaker **Examples of Electrical**

Examples of Electrical Insulation - Air Insulated Substation (AIS)

Examples of Electrical Insulation - Transmission Lines

Types of Insulations.

important role. Failure of air insulation is self-healing, as pollution become important. For GIS systems, the effects outdoor environment, the effects of rain, fog, humidity, and and polarity of the surge and the ambient conditions. In an in air is strongly dependent on gap configuration, shape, called the self-restoring insulation systems. The breakdown use air as an insulating medium for external insulation are not in every case of overvoltage It is therefore, acceptable to removal of overvoltage will restore the insulation, though of temperature, pressure, and internal irregularities play an Self-restoring insulation. The electrical power systems which optimize the cost versus failure rate, though it is not so easy to accomplish this objective due to incomplete data of the systype of insulation. We can say that the methodology tends to the cost. Probabilistic methods are, therefore, applied for this tolerate a small probability of insulation failure to minimize

tems and extensive modeling that may be required

■ Non-sdfrestoring insulation. An insulation failure can cause a permanent fault and damage. This is true of solid dielectric materials. The mechanical stresses also impact the insulation strength. Degradation of insulation tends to increase with time. Any flashover is undesirable and unacceptable. The insulation characteristics must be selected with zero percent chance of flashover with some margin of safety. Practically, the cost of equipment and voltage is an important factor. An 800-MVA transformer will receive a more thorough analysis compared to a 500-kVA distribution transformer in meeting these criteria.

XBIL and BSL:

same way but known as the lightning impulse withstand voltage. to non-self-restoring insulations. In IEC 5td 60071 [117], the BIL is defined in the cable only to self-restoring insulations, whereas the conventional BIL is applicable to a specific number of applications of this impulse. The statistical BIL is applifailure. The "conventional BIL" is the crest value of a standard lightning impulse for which the insulation does not exhibit disruptive discharge when subjected insulation exhibits a 90% probability of withstand; that is, a 10% probability of expressed in terms of the crest value of the standard lightning impulse, at standard dry atmospheric conditions. The BLL may be either statistical or conventional The "statistical BIL" is the crest value of standard lightning impulse for which the [116]: It is the electrical strength As with the BIL, the statistical BSL is applicable only to self-restoring insula specific number of applications of this impulse. In IEC 5td 60071 [117], the BSL is which the insulation does not exhibit disruptive discharge when subjected to a ure. The conventional BSL is the crest value of a standard switching impulse for the insulation exhibits a 90% probability of withstand, a 10% probability of fail-The statistical BSL is the crest value of a standard switching impulse for which tions, while the conventional BSL is applicable to non-self-restoring insulations. wet atmospheric conditions. The BSL may be either statistical or conventional expressed in terms of the crest value of a standard switching impulse, at standard called the switching impulse withstand voltage and the definition is the same. [116]: It is the electrical strength

* Standerd Impulses:

- 1.2/50 Ms Test wave:

FIGURE 17-11 (a) Breakdown probability of external insulation, linear scale Gaussian distribution (b) Breakdown probability of external insulation, Gaussian scale, or standard deviation.

Example.

* Generation of time-volts Curve:

FIGURE 17-8 Construction of volt-time breakdown characteristics

Time to Flashover

μs

no flashover no flashover

16 4 2 1 0.5

Figure 9 A sample time-lag curve.

TIME-TO- FLASHOVER

8

32

Ġ

* Standard Insulation Ratings:

a. For chapped w. b. AlthoughCol. c. Columns 6 and is normally the d. The applied vol e. The Bill. lends		786		1		88		345				230			ġ.		136			15	86	8	34.5	25	15 and below	Voltor (cV)	
velests, them intrium tim lestablishes phase-to-gourn se provide phase-to-gourn sase with data windings, t age hat is not applicable half are some manner.	2050	1800	1675	1550	1425	138	1175	98	900	825	750	950	750	650	666	88	5.55 5.50 5.50 5.50 5.50 5.50 5.50 5.50	550	450	360	3250 300 300	260	200	1 8	110	BIL (rV Crest)	
• For chapped serviceds, then thin at this thicknet shalles 3 (a) except to 10 M/PLL, in wich how the air thin this best histories. • A for chapped serviced is the property of the	2255	200	1945	1706	1570	148	1 8	8	88	906	855	715	855	715	88	715	F 8	88	8	385	35 75 55 75	276	220	8	120	(ALCHEN)	поизо Vox из Тея Унтано- (Риж-по-Фесио)
us, exapt for 110-KVBI els, it is not always poss normally be applicable to a multiplied by 1.732 to unless they have been a	1700	1500	1390	1290	1180	68	975	745	745	686 66	620	\$	620	\$	\$	\$ i	375 460	460	376	280						(KY Chest)	SMICHNO
L, in which case, then in blie to test these larets or o whe windings. When the obtain the required phase, specified to be suitable to	86	88	476	476	475	475	315	315	210	210	210	210	1 8	3	Ē	125	3 25	18	និ	18						(KV mvs)	house (Pula
- For chapped wenebod, then hairs the chaptered shallbe 20 ps. paget at 19,4/81 it, in what hairs have the baddered shallbe 20 ps. b. Although Call development of the shallbe 20 ps. b. Although Call development of the shallbe 20 ps. b. Although Call development the shallbe control the white shall be control to shallbe control to shall be contro	80	88	8	뜅	88 :	89	88	88	240	240	240	240	170	170	170	杏	南南	120	120	120						LIVEL (V PM 8)	INDUSE VOLVAE TEST (Pluse no Gravo)
libe 2.0 µs. ined phase to phase, as at level.							දි ද්	8 8	88	380	325	275	325	275	230	275	3 8	230	8	8	£ 8;	88	70	8	22	(KT mas)	Appled Voltage
	242			-	†88			1 命	H		1	121	a sign considera una significación desentación seja campa cama significación esta actividades.	r c	725	40 Co		30.2	200	- X - X - X - X - X - X - X - X - X - X	262		ថ	(kV, rms)	(PHASE-TO-PHASE)	HIGHEST VOLTAGE FOR EQUIPMENT Vm	TABLE 17-6
£ 33 83 85	2/5	000	8 C C	276	990	275	230	88	402	285		148	Ola	\$	Я	88	70	3 8	3	8	8		34	TO-GROUND) (kV, rms)	WITHSTAND (PHASE-	LOW-FREQUENCY, SHORT-DURATION	Standard Withs for Class I ^e
\$ 8 8 8 8 8	7 60	120	75	650	650	680	50	\$50	200	550	B	8	000	200	350	120	200	3 2		1 50	125	110	89	VOLTAGE (KV) CREST	WITHSTAND	LIGHTHING IM PULSE	tand Voltages
C			300 300						50						076							SC	283	(PHASE-TO-PHASE) (kV, rms)	EQUIPMENT Vm	HIGHEST VOLIAGE FOR	TABLE 17-7
1900	0300	185	1 88	Jour	1970	1675	1550	1425	UEL	18	1425	100	38	1175	NO.			1300	0/11	1000	980	300	900	(KV, PEAK)	(PEASE-TO-GROUND)	BIL	Standard Withstand Voltages for Class II®
1800	1550	100	1300			158	1425	1300	11/5			000	133	8	88	200	1050	975	8	38	3 20	j 8	650	(kV Peak)	(PHASE-TO-GROUND)	L SSL	and Voltage

System Voltage		TYPE TEST VOLTAGES		MAXIMUM SYSTEM VOLTAGE (KV)	PHASE-TO-GROUND BSL, (KV, PEAK)	RATIO BSL, /BSL,	BIL (KV, PEAK)*
RATED MAXIMUM VOLTAGE	Raten RII (vV) Cores	LOW-FREQUENCY (PHASE-TO-GROUND) WITHSTOWN (PV rmm)	SWITCHING SURGE	300	750 850	1.5 1.5	850, 950 950, 1050
72.5	350	160	and the state of t	362	850	1.5	950, 1050
121	550	215		420	850	16	1050
145	650	310		İ	950	1.5	1175, 1300
166	750	365			1050	15	1300,
102	AVA	207		550	950	1.70	1175, 1300
242	900	425			1050	1.60	1300
362	1050	500	825		1175	1.50	1425
550	1550	740	1175	800	1300	1.70	1675, 1800
. 008	2100	960	1550		1550	1.60	1950, 2100
Note: Disconnect switch open-gap with	Note. Discornect switch open-gap with stand shall be 10 percent higher than the substation type test values	ubstation type test values.		*For each of the two BILs in this column	n.		
		TABLE 17-10	-10 Factors for Estima Mineral Oil-Immer	stimating Withstand Voltages of Immersed Equipment ¹¹	ges of		
		IMPULSE DURATION	BILW	BIL MULTIPLIER EQUIPMENT TYPE	NT TYPE		
		Front of wave (0.5 µs)	1.3	1.30–1.50 Transformer	Transformers and reactors		
		Chopped wave (2 µs) Chopped wave (3 µs)	1.29 1.10-	-1.15	Breakers 15.5 kV and above Transformers and reactors		
		Full wave (1.2/50 µs)	1.00		Transformer and reactor windings		
		Switching surge, 250/2500 wave Switching surge, 250/2500 wave		-0.69	Transformer and reactor windings Bushings Bushers 369–800 kV*		

* Non-Standard Atmospheric Conditions:

All insulation specification of strength are based on the

Ambient temperature

following atmospheric conditions:

◆20° C

Air pressure

♦101.3 kPa or 760 mm Hg

Absolute humidity

◆11 grams of water per m³ of air

For wet tests

◆1 to 1.5 mm of water/minute

$V_{\mathsf{A}} = \delta^m H_{\mathsf{c}}^w V_{\mathsf{S}} \tag{5}$

are constants dependent on the factor G_0 which is defined as where δ is the relative air density, H_c is the humidity correction factor, and m and w

$$G_0 = \frac{\text{CFO}_S}{500S}$$

9

standard conditions. where S is the strike distance or clearance in meters and CFO_S is the CFO under

That is, By definition, Eq. 5 could also be written in terms of the CFO or BIL or BSL.

$$CFO_A = \delta^m H_c^w CFO_S$$

$$BIL_A = \delta^m H_c^w BIL_S$$

3

$$BSL_A = \delta^m H_c^m BSL_S$$

The humidity correction factor, per Fig. 10, for impulses is given by the equation

$$H_{\rm c} = 1 + 0.0096 \left[\frac{H}{\delta} - 11 \right] \tag{6}$$

$$H_{\rm c} = 1 + 0.0096 \left[\frac{H}{\delta} - 11 \right]$$
 (8)

conditions, $H_c = 1.0$. The values of m and w may be obtained from Fig. 11 or from Table 10. where H is the absolute humidity in grams per m^3 . For wet or simulated rain

Humidity Correction Foctor, Kh 1.15 Curve "c" DC Curve "b" impulse impulse

Table 10 Values of m and w

G_0	m	A
$-G_0 < 0.2$	0	0
$0.2 < G_0 < 1.0$		$m = w = 1.25G_0(G_0 - 0.2)$
$1.0 < G_0 < 1.2$	-	1
$1.2 < G_0 < 2.0$	-	$w = 1.25(2.2 - G_0)(2 - G_0)$
$G_0 > 2.0$	_	0

Figure 10 Humidity correction factors. (Copyright IEEE 1989 [13].

Lightning Impulse

For lightning impulses, G_0 is between 1.0 and 1.2. Therefore

$$V_{\rm A} = \delta H_{\rm c} V_{\rm S}$$

$$CFO_A = \delta H_c CFO_S$$

$$BIL_A = \delta H_c BIL_S$$

In design or selection of the insulation level, wet or rain conditions are assumed, and

 $CFO_A = \delta(CFO_S)$

 $V_{\rm A} = \delta V_{\rm S}$

 $BIL_A = \delta(BIL_S)$

therefore $H_c = 1.0$. So for design

Switching Impulse

For switching impulses, G_0 is between 0.2 and 1, and therefore

(11)__

$$m = w = 1.25G_0(G_0 - 0.2)$$

For dry conditions

$$V_{\rm A} = (\delta H_c)^m V_{\rm S} \tag{12}$$

assumed. Therefore, $H_c = 1$ and so rain conditions. Also in design for switching overvoltages, wet or rain conditions are However, in testing equipment, the BSL is always defined for wet or simulated

(10) assumed. Therefore,
$$m_c = 1$$
 and so

$$V_{A} = \delta^{m} V_{S}$$

$$CFO_{A} = \delta^{m} CFO_{S}$$
(13)

$$CFO_{A} = \delta^{m}CFO_{S}$$

$$BSL_{A} = \delta^{m}BSL_{S}$$

sity. This is defined as The only remaining factor in the above correction equations is the relative air den-

ဂ် ||

$$\frac{PT_0}{P_0T} \tag{14}$$

where P_0 and T_0 are the standard pressure and temperature with the temperature in degrees Kelvin, i.e., degrees Celsius plus 273, and P and T are the ambient pressure and temperature. The absolute humidity is obtained from the readings of the wet and dry bulb temperature; see IEEE Standard 4.

Table 11 Regression Equations, A in km

Statistic	Linear equation for mean value	Exponential equation for mean value	Average standard deviation
Relative air density, δ			
Thunderstorms	0.997 - 0.106A	$1.000\mathrm{e}^{-A/8.59}$	0.019
Nonthunderstorms	1.025 - 0.090 A	$1.025 e^{-A/9.82}$	0.028
Fair	1.023 - 0.103 A	$1.030\mathrm{e}^{-A/8.65}$	0.037
$8H_c$			
Thunderstorms	1.035-0.1474	$1.034e^{-A/6.32}$	0.025
Nonthunderstorms	1.023-0.1224	$1.017 e^{-A/8.00}$	0.031
Fair	1.025 - 0.132A	$1.013 e^{-A/7.06}$	0.034

should be restricted to altitudes less than about 2 km. The exponential form is more satisfactory, since it appears to be a superior model. Either form of the equation of Table 11 can be used, although the linear form

ditions. The σ_f /CFO is 0.07. The test voltages applied for the BIL is BSL of 1050 kV. In the laboratory, the relative air density is 0.90 and the absolute Example 1. A disconnecting switch is to be tested for its BIL of 1300 kV and its the test for the BIL is for dry conditions and the test for the BSL is for wet conhumidity is $14 \,\mathrm{g/m^3}$. Thus the humidity correction factor is 1.0437. As per standards,

$$BIL_{A} = (\delta H_{c})BIL_{S} = 1221 \text{kV}$$
 (19)

testing the BSL, let the strike distance, S, equal 3.5 m. Then Thus to test for a BIL of 1300 kV, the crest of the impulse should be 1221 kV. For

$$BSL_A = \delta^m BSL_S$$

$$CFO_s = \frac{BSL_s}{1-1.28 \sigma_f / CFO_s} = 1153 \text{ kV}$$

$$G_0 = \frac{\text{CFO}_S}{500S} = 0.6591$$

$$m = 1.25G_0(G_0 - 0.2) = 0.3782$$

(20)

Thus to test for a BSL of 1050 kV, the crest of the impulse should be 1009 kV.

meters where $\delta = 0.7925$. Assume wet conditions, i.e., $H_c = 1$. 1400 kV for a strike distance of 4.0 meters. Determine the CFO at an altitude of 2000 Example 2. The positive polarity switching impulse CFO at standard conditions is

$$G_0 = \frac{1400}{4.0(500)} = 0.700$$

$$CFO_{\mathbf{A}} = (1400)0.7925^{0.4375} = 1265$$

 $m = 1.25G_0(G_0 - 0.2) = 0.4375$

(21)

conditions, i.e., $H_c = 1$. For a relative air density of 0.7925, the CFO is spheric conditions, be equal 2240 kV for a strike distance of 4 meters. Assume wet Example 3. Let the CFO for lightning impulse, positive polarity at standard atmo-

$$CFO_A = 0.7925(2240) = 1775 \text{ kV}$$

$$CFO_A = 0.7925(2240) = 1775 \,\mathrm{kV}$$

(22)